Effective Wildness : Part 3

Effective Wildness : Part 3

So, ending off last time I teased an EF equation that produced a record of 928 – 575 (.617) So what was it? Well, it was;

(SO/BB Ratio) / (EF)

To produce a rate over 1.00, a pitcher has to produce a low EF ratio. In the history of Major League Baseball, a total of 53 pitchers have produced SO/BB €“ EF ratio over 1 in 67 different seasons in the history of MLB baseball. Here’s the list, in order;

First Name ‘ Last Name”” Year”’ Wins Losses EF”””””””””” SO/BB”””””’ SO/BB / EF””””
Pedro Martinez 2000 18 6 2.285714 8.875 3.882813
Bret Saberhagen 1994 14 4 3.25 11 3.384615
Greg Maddux 1997 19 4 3.333333 8.85 2.655
Carlos Silva 2005 9 8 3 7.888889 2.62963
Kevin Brown 1996 17 11 2.0625 4.818182 2.336088
Cy Young 1905 18 19 3 7 2.333333
Roy Halladay 2005 12 4 2.571429 6 2.333333
Pedro Martinez 2002 20 4 2.666667 5.975 2.240625
David Wells 2005 15 7 2.333333 5.095238 2.183673
David Bush 2006 12 11 2.111111 4.368421 2.069252
Pedro Martinez 1999 23 4 4.111111 8.459459 2.057706
Brad Radke 2001 15 11 2.6 5.269231 2.026627
David Wells 2003 15 7 2.5 5.05 2.02
Ben Sheets 2006 6 7 5.5 10.54545 1.917355
Red Donahue 1903 7 9 2 3.75 1.875
Roy Halladay 2003 22 7 3.555556 6.375 1.792969
Cy Young 1906 13 21 3.125 5.6 1.792
Greg Maddux 2001 17 11 3.857143 6.407407 1.66118
Danny Darwin 1996 7 9 2.666667 4.3125 1.617188
Doug Jones 1992 11 8 3.4 5.470588 1.608997
Jesse Tannehill 1902 20 6 2.5 4 1.6
Jesse Tannehill 1904 21 11 2.2 3.515152 1.597796
Jim Bunning 1966 19 14 2.894737 4.581818 1.58281
Pedro Martinez 2001 7 3 4.166667 6.52 1.5648
Brad Radke 2005 9 12 3.285714 5.086957 1.548204
Jeff Weaver 2005 14 11 2.388889 3.651163 1.528394
Walter Johnson 1913 36 7 4.222222 6.394737 1.514543
Bob Locker 1967 7 5 2.3 3.478261 1.512287
Roy Oswalt 2001 14 3 4 6 1.5
Randy Johnson 2004 16 14 4.4 6.590909 1.497934
Shane Reynolds 1994 8 5 3.5 5.238095 1.496599
Don Drysdale 1966 13 16 2.647059 3.933333 1.485926
Bob Tewksbury 1993 17 10 3.333333 4.85 1.455
Jim Bunning 1964 19 8 3.285714 4.76087 1.44896
Carl Pavano 2005 4 6 2.25 3.111111 1.382716
David Wells 2000 20 8 3.875 5.354839 1.381894
Randy Johnson 2003 6 8 3.375 4.62963 1.371742
Greg Maddux 1995 19 2 5.75 7.869565 1.36862
Josh Towers 2001 8 10 2.666667 3.625 1.359375
Bret Saberhagen 1999 10 6 5.5 7.363636 1.338843
Randy Johnson 2001 21 6 3.944444 5.239437 1.328308
Bronson Arroyo 2004 10 9 2.35 3.021277 1.28565
Brad Radke 2004 11 8 4.333333 5.5 1.269231
Jim Merritt 1967 13 7 4.285714 5.366667 1.252222
Greg Maddux 2004 16 11 3.666667 4.575758 1.247934
Walter Johnson 1915 27 13 2.947368 3.625 1.229911
Bryn Smith 1988 12 10 3.2 3.8125 1.191406
Zack Greinke 2004 8 11 3.25 3.846154 1.183432
Dennis Eckersley 1987 6 8 5.666667 6.647059 1.17301
David Bush 2005 5 11 2.230769 2.586207 1.159334
Cy Young 1903 28 9 4.111111 4.756757 1.157049
Dick Hall 1963 5 5 4 4.625 1.15625
Jose Lima 1998 16 8 4.571429 5.28125 1.155273
Randy Johnson 2005 17 8 3.916667 4.489362 1.14622
Steve Woodard 1998 10 12 3.666667 4.090909 1.115702
Deacon Phillippe 1910 14 2 3 3.333333 1.111111
Rick Reed 1998 16 11 4.833333 5.275862 1.091558
Phil Douglas 1915 5 5 3.4 3.705882 1.089965
Brad Radke 2002 9 5 2.857143 3.1 1.085
Greg Maddux 2000 19 9 4.2 4.52381 1.077098
Jim Kaat 1967 16 13 4.666667 5.02381 1.076531
Rick Reed 2002 15 7 4.333333 4.653846 1.073964
Kevin Brown 1998 18 7 4.9 5.244898 1.070387
Jon Lieber 2006 9 11 4 4.166667 1.041667
Ben Sheets 2004 12 14 8 8.25 1.03125
Doug Linton 1996 7 9 3.25 3.346154 1.029586
Barney Wolfe 1904 6 9 2 2 1

This ratio is VERY dependant on low walk totals, as both half’s of the equation deal with walks. Does a low SO/BB €“ EF ratio produce a better record than a let’s say a SO/BB ratio? How about a low BB/IP ratio. Let’s see by using the top 67 seasons (to match up with our previous equation) of each equation.

Type Wins Losses Winning %
SO/BB (high) 1038 545 .656
BB/IP (low) 1131 651 .634
SO/HBP (low) 567 677 .456
SO/HBP (high) 1224 685 .641

What does this all mean? Obviously low walk totals can lead to good things, as evidenced by the BB/IP, and SO/BB ratios. The low end of SO/HBP was predictable, as low K totals coupled with high HBP totals spell out no control. On the other hand, the high end of SO/HBP was pretty surprising, producing the highest win total (18.2 on average). So this group of pitchers obviously didn’t need to hit anybody to gain success. This group averaged a SO/IP ratio of 7.1 and a SO/HBP ratio of 197.5.

So, in the end, is having a high EF important to success? Well, I think that it can in-fact help out control pitchers with less than spectacular stuff, it won’t hurt a bully either. The low walks are a huge driving force, there’s no doubt. But I’d like to see some proof in a modern setting. This will come in the form of an added part four, which will look a selection of control and power pitchers from the past three seasons, their respective EF’s, and their overall level of success.

More from Matthias Koster
Jays Signing: Jon Rauch Statistical Overview
The Toronto Blue Jays added another arm to the bullpen yesterday, signing...
Read More
0 replies on “Effective Wildness : Part 3”