Effective Wildness : Part 3
So, ending off last time I teased an EF equation that produced a record of 928 – 575 (.617) So what was it? Well, it was;
(SO/BB Ratio) / (EF)
To produce a rate over 1.00, a pitcher has to produce a low EF ratio. In the history of Major League Baseball, a total of 53 pitchers have produced SO/BB €“ EF ratio over 1 in 67 different seasons in the history of MLB baseball. Here’s the list, in order;
First Name ‘ | Last Name”” | Year”’ | Wins | Losses | EF”””””””””” | SO/BB”””””’ | SO/BB / EF”””” |
Pedro | Martinez | 2000 | 18 | 6 | 2.285714 | 8.875 | 3.882813 |
Bret | Saberhagen | 1994 | 14 | 4 | 3.25 | 11 | 3.384615 |
Greg | Maddux | 1997 | 19 | 4 | 3.333333 | 8.85 | 2.655 |
Carlos | Silva | 2005 | 9 | 8 | 3 | 7.888889 | 2.62963 |
Kevin | Brown | 1996 | 17 | 11 | 2.0625 | 4.818182 | 2.336088 |
Cy | Young | 1905 | 18 | 19 | 3 | 7 | 2.333333 |
Roy | Halladay | 2005 | 12 | 4 | 2.571429 | 6 | 2.333333 |
Pedro | Martinez | 2002 | 20 | 4 | 2.666667 | 5.975 | 2.240625 |
David | Wells | 2005 | 15 | 7 | 2.333333 | 5.095238 | 2.183673 |
David | Bush | 2006 | 12 | 11 | 2.111111 | 4.368421 | 2.069252 |
Pedro | Martinez | 1999 | 23 | 4 | 4.111111 | 8.459459 | 2.057706 |
Brad | Radke | 2001 | 15 | 11 | 2.6 | 5.269231 | 2.026627 |
David | Wells | 2003 | 15 | 7 | 2.5 | 5.05 | 2.02 |
Ben | Sheets | 2006 | 6 | 7 | 5.5 | 10.54545 | 1.917355 |
Red | Donahue | 1903 | 7 | 9 | 2 | 3.75 | 1.875 |
Roy | Halladay | 2003 | 22 | 7 | 3.555556 | 6.375 | 1.792969 |
Cy | Young | 1906 | 13 | 21 | 3.125 | 5.6 | 1.792 |
Greg | Maddux | 2001 | 17 | 11 | 3.857143 | 6.407407 | 1.66118 |
Danny | Darwin | 1996 | 7 | 9 | 2.666667 | 4.3125 | 1.617188 |
Doug | Jones | 1992 | 11 | 8 | 3.4 | 5.470588 | 1.608997 |
Jesse | Tannehill | 1902 | 20 | 6 | 2.5 | 4 | 1.6 |
Jesse | Tannehill | 1904 | 21 | 11 | 2.2 | 3.515152 | 1.597796 |
Jim | Bunning | 1966 | 19 | 14 | 2.894737 | 4.581818 | 1.58281 |
Pedro | Martinez | 2001 | 7 | 3 | 4.166667 | 6.52 | 1.5648 |
Brad | Radke | 2005 | 9 | 12 | 3.285714 | 5.086957 | 1.548204 |
Jeff | Weaver | 2005 | 14 | 11 | 2.388889 | 3.651163 | 1.528394 |
Walter | Johnson | 1913 | 36 | 7 | 4.222222 | 6.394737 | 1.514543 |
Bob | Locker | 1967 | 7 | 5 | 2.3 | 3.478261 | 1.512287 |
Roy | Oswalt | 2001 | 14 | 3 | 4 | 6 | 1.5 |
Randy | Johnson | 2004 | 16 | 14 | 4.4 | 6.590909 | 1.497934 |
Shane | Reynolds | 1994 | 8 | 5 | 3.5 | 5.238095 | 1.496599 |
Don | Drysdale | 1966 | 13 | 16 | 2.647059 | 3.933333 | 1.485926 |
Bob | Tewksbury | 1993 | 17 | 10 | 3.333333 | 4.85 | 1.455 |
Jim | Bunning | 1964 | 19 | 8 | 3.285714 | 4.76087 | 1.44896 |
Carl | Pavano | 2005 | 4 | 6 | 2.25 | 3.111111 | 1.382716 |
David | Wells | 2000 | 20 | 8 | 3.875 | 5.354839 | 1.381894 |
Randy | Johnson | 2003 | 6 | 8 | 3.375 | 4.62963 | 1.371742 |
Greg | Maddux | 1995 | 19 | 2 | 5.75 | 7.869565 | 1.36862 |
Josh | Towers | 2001 | 8 | 10 | 2.666667 | 3.625 | 1.359375 |
Bret | Saberhagen | 1999 | 10 | 6 | 5.5 | 7.363636 | 1.338843 |
Randy | Johnson | 2001 | 21 | 6 | 3.944444 | 5.239437 | 1.328308 |
Bronson | Arroyo | 2004 | 10 | 9 | 2.35 | 3.021277 | 1.28565 |
Brad | Radke | 2004 | 11 | 8 | 4.333333 | 5.5 | 1.269231 |
Jim | Merritt | 1967 | 13 | 7 | 4.285714 | 5.366667 | 1.252222 |
Greg | Maddux | 2004 | 16 | 11 | 3.666667 | 4.575758 | 1.247934 |
Walter | Johnson | 1915 | 27 | 13 | 2.947368 | 3.625 | 1.229911 |
Bryn | Smith | 1988 | 12 | 10 | 3.2 | 3.8125 | 1.191406 |
Zack | Greinke | 2004 | 8 | 11 | 3.25 | 3.846154 | 1.183432 |
Dennis | Eckersley | 1987 | 6 | 8 | 5.666667 | 6.647059 | 1.17301 |
David | Bush | 2005 | 5 | 11 | 2.230769 | 2.586207 | 1.159334 |
Cy | Young | 1903 | 28 | 9 | 4.111111 | 4.756757 | 1.157049 |
Dick | Hall | 1963 | 5 | 5 | 4 | 4.625 | 1.15625 |
Jose | Lima | 1998 | 16 | 8 | 4.571429 | 5.28125 | 1.155273 |
Randy | Johnson | 2005 | 17 | 8 | 3.916667 | 4.489362 | 1.14622 |
Steve | Woodard | 1998 | 10 | 12 | 3.666667 | 4.090909 | 1.115702 |
Deacon | Phillippe | 1910 | 14 | 2 | 3 | 3.333333 | 1.111111 |
Rick | Reed | 1998 | 16 | 11 | 4.833333 | 5.275862 | 1.091558 |
Phil | Douglas | 1915 | 5 | 5 | 3.4 | 3.705882 | 1.089965 |
Brad | Radke | 2002 | 9 | 5 | 2.857143 | 3.1 | 1.085 |
Greg | Maddux | 2000 | 19 | 9 | 4.2 | 4.52381 | 1.077098 |
Jim | Kaat | 1967 | 16 | 13 | 4.666667 | 5.02381 | 1.076531 |
Rick | Reed | 2002 | 15 | 7 | 4.333333 | 4.653846 | 1.073964 |
Kevin | Brown | 1998 | 18 | 7 | 4.9 | 5.244898 | 1.070387 |
Jon | Lieber | 2006 | 9 | 11 | 4 | 4.166667 | 1.041667 |
Ben | Sheets | 2004 | 12 | 14 | 8 | 8.25 | 1.03125 |
Doug | Linton | 1996 | 7 | 9 | 3.25 | 3.346154 | 1.029586 |
Barney | Wolfe | 1904 | 6 | 9 | 2 | 2 | 1 |
This ratio is VERY dependant on low walk totals, as both half’s of the equation deal with walks. Does a low SO/BB €“ EF ratio produce a better record than a let’s say a SO/BB ratio? How about a low BB/IP ratio. Let’s see by using the top 67 seasons (to match up with our previous equation) of each equation.
Type | Wins | Losses | Winning % |
SO/BB (high) | 1038 | 545 | .656 |
BB/IP (low) | 1131 | 651 | .634 |
SO/HBP (low) | 567 | 677 | .456 |
SO/HBP (high) | 1224 | 685 | .641 |
What does this all mean? Obviously low walk totals can lead to good things, as evidenced by the BB/IP, and SO/BB ratios. The low end of SO/HBP was predictable, as low K totals coupled with high HBP totals spell out no control. On the other hand, the high end of SO/HBP was pretty surprising, producing the highest win total (18.2 on average). So this group of pitchers obviously didn’t need to hit anybody to gain success. This group averaged a SO/IP ratio of 7.1 and a SO/HBP ratio of 197.5.
So, in the end, is having a high EF important to success? Well, I think that it can in-fact help out control pitchers with less than spectacular stuff, it won’t hurt a bully either. The low walks are a huge driving force, there’s no doubt. But I’d like to see some proof in a modern setting. This will come in the form of an added part four, which will look a selection of control and power pitchers from the past three seasons, their respective EF’s, and their overall level of success.