Effective Wildness : Part 3

Effective Wildness : Part 3

So, ending off last time I teased an EF equation that produced a record of 928 – 575 (.617) So what was it? Well, it was;

(SO/BB Ratio) / (EF)

To produce a rate over 1.00, a pitcher has to produce a low EF ratio. In the history of Major League Baseball, a total of 53 pitchers have produced SO/BB €“ EF ratio over 1 in 67 different seasons in the history of MLB baseball. Here’s the list, in order;

First Name ‘ Last Name”” Year”’ Wins Losses EF”””””””””” SO/BB”””””’ SO/BB / EF””””
Pedro Martinez 2000 18 6 2.285714 8.875 3.882813
Bret Saberhagen 1994 14 4 3.25 11 3.384615
Greg Maddux 1997 19 4 3.333333 8.85 2.655
Carlos Silva 2005 9 8 3 7.888889 2.62963
Kevin Brown 1996 17 11 2.0625 4.818182 2.336088
Cy Young 1905 18 19 3 7 2.333333
Roy Halladay 2005 12 4 2.571429 6 2.333333
Pedro Martinez 2002 20 4 2.666667 5.975 2.240625
David Wells 2005 15 7 2.333333 5.095238 2.183673
David Bush 2006 12 11 2.111111 4.368421 2.069252
Pedro Martinez 1999 23 4 4.111111 8.459459 2.057706
Brad Radke 2001 15 11 2.6 5.269231 2.026627
David Wells 2003 15 7 2.5 5.05 2.02
Ben Sheets 2006 6 7 5.5 10.54545 1.917355
Red Donahue 1903 7 9 2 3.75 1.875
Roy Halladay 2003 22 7 3.555556 6.375 1.792969
Cy Young 1906 13 21 3.125 5.6 1.792
Greg Maddux 2001 17 11 3.857143 6.407407 1.66118
Danny Darwin 1996 7 9 2.666667 4.3125 1.617188
Doug Jones 1992 11 8 3.4 5.470588 1.608997
Jesse Tannehill 1902 20 6 2.5 4 1.6
Jesse Tannehill 1904 21 11 2.2 3.515152 1.597796
Jim Bunning 1966 19 14 2.894737 4.581818 1.58281
Pedro Martinez 2001 7 3 4.166667 6.52 1.5648
Brad Radke 2005 9 12 3.285714 5.086957 1.548204
Jeff Weaver 2005 14 11 2.388889 3.651163 1.528394
Walter Johnson 1913 36 7 4.222222 6.394737 1.514543
Bob Locker 1967 7 5 2.3 3.478261 1.512287
Roy Oswalt 2001 14 3 4 6 1.5
Randy Johnson 2004 16 14 4.4 6.590909 1.497934
Shane Reynolds 1994 8 5 3.5 5.238095 1.496599
Don Drysdale 1966 13 16 2.647059 3.933333 1.485926
Bob Tewksbury 1993 17 10 3.333333 4.85 1.455
Jim Bunning 1964 19 8 3.285714 4.76087 1.44896
Carl Pavano 2005 4 6 2.25 3.111111 1.382716
David Wells 2000 20 8 3.875 5.354839 1.381894
Randy Johnson 2003 6 8 3.375 4.62963 1.371742
Greg Maddux 1995 19 2 5.75 7.869565 1.36862
Josh Towers 2001 8 10 2.666667 3.625 1.359375
Bret Saberhagen 1999 10 6 5.5 7.363636 1.338843
Randy Johnson 2001 21 6 3.944444 5.239437 1.328308
Bronson Arroyo 2004 10 9 2.35 3.021277 1.28565
Brad Radke 2004 11 8 4.333333 5.5 1.269231
Jim Merritt 1967 13 7 4.285714 5.366667 1.252222
Greg Maddux 2004 16 11 3.666667 4.575758 1.247934
Walter Johnson 1915 27 13 2.947368 3.625 1.229911
Bryn Smith 1988 12 10 3.2 3.8125 1.191406
Zack Greinke 2004 8 11 3.25 3.846154 1.183432
Dennis Eckersley 1987 6 8 5.666667 6.647059 1.17301
David Bush 2005 5 11 2.230769 2.586207 1.159334
Cy Young 1903 28 9 4.111111 4.756757 1.157049
Dick Hall 1963 5 5 4 4.625 1.15625
Jose Lima 1998 16 8 4.571429 5.28125 1.155273
Randy Johnson 2005 17 8 3.916667 4.489362 1.14622
Steve Woodard 1998 10 12 3.666667 4.090909 1.115702
Deacon Phillippe 1910 14 2 3 3.333333 1.111111
Rick Reed 1998 16 11 4.833333 5.275862 1.091558
Phil Douglas 1915 5 5 3.4 3.705882 1.089965
Brad Radke 2002 9 5 2.857143 3.1 1.085
Greg Maddux 2000 19 9 4.2 4.52381 1.077098
Jim Kaat 1967 16 13 4.666667 5.02381 1.076531
Rick Reed 2002 15 7 4.333333 4.653846 1.073964
Kevin Brown 1998 18 7 4.9 5.244898 1.070387
Jon Lieber 2006 9 11 4 4.166667 1.041667
Ben Sheets 2004 12 14 8 8.25 1.03125
Doug Linton 1996 7 9 3.25 3.346154 1.029586
Barney Wolfe 1904 6 9 2 2 1

This ratio is VERY dependant on low walk totals, as both half’s of the equation deal with walks. Does a low SO/BB €“ EF ratio produce a better record than a let’s say a SO/BB ratio? How about a low BB/IP ratio. Let’s see by using the top 67 seasons (to match up with our previous equation) of each equation.

Type Wins Losses Winning %
SO/BB (high) 1038 545 .656
BB/IP (low) 1131 651 .634
SO/HBP (low) 567 677 .456
SO/HBP (high) 1224 685 .641

What does this all mean? Obviously low walk totals can lead to good things, as evidenced by the BB/IP, and SO/BB ratios. The low end of SO/HBP was predictable, as low K totals coupled with high HBP totals spell out no control. On the other hand, the high end of SO/HBP was pretty surprising, producing the highest win total (18.2 on average). So this group of pitchers obviously didn’t need to hit anybody to gain success. This group averaged a SO/IP ratio of 7.1 and a SO/HBP ratio of 197.5.

So, in the end, is having a high EF important to success? Well, I think that it can in-fact help out control pitchers with less than spectacular stuff, it won’t hurt a bully either. The low walks are a huge driving force, there’s no doubt. But I’d like to see some proof in a modern setting. This will come in the form of an added part four, which will look a selection of control and power pitchers from the past three seasons, their respective EF’s, and their overall level of success.

More from Matthias Koster
Correcting Keith Law
Keith Law Quote (Bold Added) Toronto had another questionable selection in John...
Read More
0 replies on “Effective Wildness : Part 3”